博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
(转) Face-Resources
阅读量:7066 次
发布时间:2019-06-28

本文共 2134 字,大约阅读时间需要 7 分钟。

 

 
 
本文转自:https://github.com/betars/Face-Resources

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

  1. .A work from Facebook.
  2. .A work from Google.
  3. . Dlib implements the algorithm.

Datasets

  1. . 10,575 subjects and 494,414 images
  2. .13,000 images and 5749 subjects
  3.  202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.
  4. . 202,792 images and 1,583 subjects.
  5.  1 Million Faces for Recognition at Scale 690,572 unique people
  6. . A Dataset With Over 100,000 Face Images of 530 People.
  7. .Face Detection and Data Set Benchmark. 5k images.
  8. .Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.
  9. . Annotated Faces in the Wild. ~1k images. 10.. 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)
  10. .Mobile Biometry MOBIO 
  11. . Univ of Surrey
  12. . (Lijun Yin, Peter Gerhardstein and teammates)
  13. . BioID group
  14. . 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.
  15. . 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.
  16. . Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.
  17.  400 faces of 40 people (10 images per people)

Trained Model

  1. . Face recognition with Google's FaceNet deep neural network using Torch.
  2. . VGG-Face CNN descriptor. Impressed embedding loss.
  3. . SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.
  4.  - Caffe Face is developed for face recognition using deep neural networks.

Tutorial

  1. . Shiguan Shan, Xiaogang Wang, and Ming yang.

Software

  1. . With some trained face detector models.
  2. . Dlib implements a state-of-the-art of face Alignment algorithm.
  3. . With a state-of-the-art frontal face detector
  4. . A binary library for face detection in images.
  5. . An open source C++ face recognition engine.

Frameworks

Miscellaneous

  1.  Face swapping with Python, dlib, and OpenCV
  2.  Competition on Kaggle.

Created by betars on 27/10/2015.

 

转载地址:http://faall.baihongyu.com/

你可能感兴趣的文章
iOS学习——iOS系统架构(三)
查看>>
AndroidUI优化工具——HierarchyViewer
查看>>
MyBatis多参数传递之默认命名方式示例——MyBatis学习笔记之十二
查看>>
USB引导盘制作
查看>>
一线网络工程师需要注意的十个非技术细节
查看>>
UML建模之状态图(Statechart Diagram)
查看>>
perl CPU利用率
查看>>
IT小妙招:请走开!自作聪明的Windows 7边缘最大化
查看>>
Insufficient system resources exist to complete the requested service
查看>>
TCL语法复习笔记(二)
查看>>
Java Socket 网络编程常见异常
查看>>
outlook小故障汇总
查看>>
通过自己的项目实际经验,阐述为什么“恶心玩技术”?玩Java技术的教训(一)...
查看>>
蚂蚁分类信息系统 5.8 地区增加多级分类
查看>>
linux下绑定双网卡
查看>>
LeetCode - 45. Jump Game II
查看>>
初识RecyclerView
查看>>
科学方法的步骤
查看>>
SaltStack工具中MySQL的模块返回值问题解决
查看>>
升级python到2.6.5
查看>>